Age at start of endurance training is associated with patterns of left ventricular hypertrophy in middle-aged runners

Christoph P. Ryffel, Prisca Eser, Lukas D. Trachsel, Nicolas Brugger, Matthias Wilhelm *

Department of Cardiology, Inselhospital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland

A R T I C L E I N F O

Article history:
Received 5 March 2018
Received in revised form 6 April 2018
Accepted 23 April 2018

Keywords:
Left ventricular mass
Left ventricular hypertrophy
Exercise training

A B S T R A C T

Background: Left ventricular hypertrophy (LVH) is a physiological adaptation to long-term endurance training. We investigated the impact of age at start of endurance training on LV geometry in a cohort of male, middle-aged, non-elite endurance athletes.

Methods: A total of 121 healthy, normotensive, Caucasian participants of a 10-mile race were recruited and assessed with an echocardiogram and a comprehensive interview. Athletes were classified based on patterns of LVH.

Results: Thirty-five athletes (31%) had LVH. Athletes with eccentric LVH (16%) were significantly younger at start of endurance training compared to athletes with concentric LVH (15±4 vs. 31±8 years; P<0.001). Although the yearly volume of endurance training was comparable between athletes with eccentric and concentric LVH, athletes with eccentric LVH had shorter race times. All athletes with an increased LV end diastolic volume index (LVEDVI; ≥74 ml/m²) started endurance training before or at age 25.

Conclusions: In our cohort of non-elite middle-aged runners, eccentric LVH was found only in athletes with an early start of endurance training. In case of a mature starting age, endurance training may, contrary to what is commonly assumed, also lead to concentric LVH. The consideration of endurance training starting age may lead to a better understanding of morphological adaptations of the heart.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Regular long-term exercise results in a series of adaptations of cardiac structure. This phenomenon, also called the athlete’s heart, has been known for over a century and observed in different athletic populations [1–4]. The ‘Morganroth Hypothesis’ (MH) formed a milestone for the understanding of these adaptations and was subsequently widely adopted. This hypothesis states that the type of training plays a central role in the differential adaptation to exercise stress: Endurance training is proposed to lead, as a consequence of volume overload, to eccentric left ventricular hypertrophy (LVH), whereas strength training, as a consequence of pressure overload, to concentric LVH [1]. Despite ample evidence, the MH has been challenged by at least 6 recent studies. Utomi et al. and Spence et al. described a lack of concentric LVH in strength-trained athletes [6–8]. Caselli et al. demonstrated a balanced adaptation of LV mass and LV volume regardless of type of training [9]. Arbab-Zadeh et al. showed that the LV responded to endurance training with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement, with a normalization of mass-to-volume ratio thereafter [10]. Finally, Finocchiaro et al. observed that a significant proportion of endurance-trained elite athletes showed eccentric LVH [11].

Concentric LVH is characterized by an overproportional increase in wall thickness compared to the cavity dimensions. Eccentric LVH, on the other hand, is the result of a proportionate increase in LV cavity dimensions and wall thickness [12,13]. A multivariate analysis based on data of a large Italian elite athlete population showed that 72% of variability in LV cavity dimension was attributable to non-genetic factors, such as body surface area (BSA), type of sport, gender and age [1]. The remaining 25% of variability could not be explained and was ascribed to genetic factors [14,15].

While the MH was primarily based on studies in young elite athletes [16], studies on middle-aged amateur athletes are rare. Whether findings from young athletes can be translated to previously sedentary persons starting endurance training at an advanced age is questionable. It is a relatively recent phenomenon that previously sedentary persons take up participation in endurance competitions requiring a large volume of training, which may be why studies including older and previously sedentary athletes are rare. It is plausible that the adaptive responses of the heart and the cardiovascular system may differ between peripubertal
and mature aspiring athletes, similar to what has been well established in bone [17,18].

The central hypothesis of the present study was that the morphological cardiac adaptation to endurance training is a function of age at start of endurance training, with athletes starting endurance training at a more mature age having a lesser potential for cavity enlargement. Therefore we assessed the effect of starting age on LV geometry in a cohort of male, middle-aged, non-elite endurance athletes.

2. Methods

2.1. Participants and protocol

The Grand Prix of Bern is a popular 10 mile race in Switzerland with over 30,000 participants annually. Male non-elite runners were recruited for two studies on endurance exercise and atrial remodeling as previously described [19,20]. Runners aged 30 years and older, with and without a history of former long-distance runs, were included. Exclusion criteria were a history of cardiovascular disease, medication intake, or cardiovascular risk factors, in particular arterial hypertension, defined as an office blood pressure (BP) ≥140/90 mm Hg at the initial visit [21].

Athletes included in the above cited studies were contacted by e-mail and/or postal mail to arrange a comprehensive phone interview on their sports history. The interview included questions regarding their sports disciplines based on the Mitchell classification [22,23], starting age of the concerned disciplines and average volume of training per week of concerned sports disciplines on a year by year basis. The calculation of average training hours was determined by the athletes’ estimation and/or exercise diary. Age at start of endurance sports career and, if applicable, average volume of competitions per year (in hours), as well as longer training interruptions were also recorded and accounted for in the calculations. Endurance training starting age was defined as the age when athletes performed at least 2 h of endurance training per week. Lifetime cumulative training hours according to Mitchell sports categories were calculated using the following formula: average training hours per sports category per week × 52 × training years [19,20], calculated on a year by year basis if volume varied. Mitchell classes CI-CIII were further subdivided in cumulative lifetime ball sports including soccer, tennis, handball, field hockey, badminton, basketball, ice hockey, and cumulative lifetime endurance training including running, orienteering, cross-country skiing, swimming, rowing, cycling and triathlon. All athletes provided written informed consent and the protocol was approved by the local ethics committee.

2.2. Transthoracic echocardiography

Standard two-dimensional TTE was performed on a Phillips iE33 System (X5-1 transducer, Phillips Medical Systems, Zurich, Switzerland). LV internal diameter (LVID), interventricular septum (IVS) and posterior wall thickness (PWT) were measured in M-mode from the parasternal long-axis view at end-diastole. LV mass was calculated based on the biplane method of disks summation technique. Volume measurements were based on the parasternal long-axis view and end-diastole. LV mass was calculated based on the cube formula: LV mass = 0.8 × 1.04 × [(IVS + LVID + PWT)3] + 0.6 g and indexed for BSA [12]. LVH was defined as LV mass/BSA ≥ 116 g/m2 [12,24]. LV end-diastolic (LVEDV), and LV end-systolic volumes (LVEVS) were calculated using the biplane method of disks summation technique. Volume measurements were based on the aortic position of LVH. The central hypothesis of the present study was that the morphological cardiac adaptation to endurance training is a function of age at start of endurance training, with athletes starting endurance training at a more mature age having a lesser potential for cavity enlargement. Therefore we assessed the effect of starting age on LV geometry in a cohort of male, middle-aged, non-elite endurance athletes.

2.3. Data analysis

The data was analysed with SPSS Software for Windows (Version 17.0, SPSS Inc., Chicago, USA). The normality of quantitative variables was inspected visually and homogeneity of variances tested by Levene test. Normally distributed data were presented as mean ± standard deviation (SD), and non-normally distributed variables as median and interquartile range (IQR).

All athletes were classified by patterns of LVH [26] and resulting groups were compared with regard to anthropometric and echocardiographic data, as well as detailed sports history. Normally distributed variables with homogenous variances were compared by univariate ANOVA with Tukey post hoc testing or Dunnet T3 post hoc testing if variances were heterogeneous. Between group comparisons of data with non-parametric distribution was performed by Kruskal-Wallis tests with Bonferroni-adjusted Mann-Whitney-U post hoc testing.

We performed linear regression models for the dependent variable LVEDV. Rather than performing models for LVEDV indexed by BSA, we decided to enter BSA as an independent variable into the model. This allowed a direct comparison with the model presented by Pelliccia and colleagues [14]. To identify the independent parameters for forced inclusion into the models we performed a correlation matrix with Pearson and Spearman correlation coefficients between LVEDV and the following variables: BSA, BMI, HR at rest, systolic BP, age, age at start of endurance training, hours of endurance training per year, 10 mile race time, cumulative lifetime training hours for all, high dynamic, and endurance sports. We only entered independent parameters with significant linear relationship to LVEDV into the models. In case of collinearity between independent parameters, we chose to enter only the parameter with the stronger association with LVEDV. Further, we performed a logistic regression model for athletes with LVH with eccentric and concentric LVH as binary dependent variable and the three training variables age at start of endurance training, cumulative lifetime endurance training, and yearly endurance training as independent variables. We also performed univariate logistic regression models with the same dependent variable and the independent training variables entered individually into the models. Alpha was set at 0.05.

3. Results

3.1. Study subjects

A total of 174 male runners were contacted by mail. An interview lasting approximately 45 min was performed with 121 athletes, of whom 98 completed the interview by phone and 23 chose to complete a questionnaire by postal mail. Mean and SD of age was 42 ± 8 years. A broad spectrum of endurance athletes was included, ranging from leisure-time runners with a first participation in a 10 mile race up to semi-professional long-distance runners with >20,000 cumulative lifetime endurance training hours (median 3692, IQR 1963-8398).

3.2. LV geometry

Baseline characteristics and echocardiographic data are shown in Table 1 stratified according to patterns of LVH. Athletes with eccentric LVH had a lower HR and greater LVEDV than all other athletes. Furthermore, athletes with eccentric LVH had a significantly lower posterior and relative wall thickness than athletes with concentric LVH.

Characteristics of sports history, stratified according to patterns of LVH, are shown in Table 2. Thirty-five athletes (31%) had LVH. Significant differences between groups were found for age at start of endurance training, 10 mile race time and cumulative lifetime training hours for all, high dynamic, and endurance sports. Athletes with eccentric LVH had significantly more cumulative lifetime endurance training hours compared to athletes with concentric LVH. However, the amount of endurance training hours per year did not differ between athletes with eccentric and those with concentric LVH. Athletes with eccentric LVH were younger at start of endurance training and had shorter race times compared to athletes with normal LV geometry or concentric LVH.

The influence of age at start of endurance training on LV geometry can be seen in Fig. 1. All athletes with eccentric LVH started endurance training at an age ≤ 25 years (mean 14 ± 5 years). On the other hand, age at start of endurance training in athletes with concentric LVH was considerably older (31 ± 8 years), and only three athletes (17%) in this group started endurance training between age 17–25. Similarly all athletes with an increased LVEDV (>247 ml/m2) started endurance training at an age ≤ 25 years (mean 14 ± 5 years).

3.3. Determinants of LV cavity size

There was a significant association between LVEDV and the following parameters: Age (Spearman correlation coefficient ρ = 0.30), BSA (0.19), HR at rest (−0.46), age at start of endurance training (−0.46), endurance training per year (0.25), 10 mile race time (−0.44) and cumulative lifetime training hours for all (0.27), high dynamic (0.29), and endurance sports (0.32, all P < 0.01, except BSA P = 0.05). The variables most strongly related to LVEDV were age at start of endurance training and HR at rest. Age and age at start of endurance training were correlated (0.35, P < 0.001). Age at start of endurance training
was more strongly correlated with LVEDV than age, therefore we omitted age from the model. Likewise, variables of sports characteristics were highly correlated with each other (all Spearman correlation coefficients between 0.50 and 0.94, all \(P < 0.001 \), except for the correlation between age at start of endurance training and endurance training per year (Spearman inverse correlation coefficient of 0.20, \(P = 0.03 \)). Therefore we included the variable least correlated with age at start of endurance training, namely endurance training per year. Model 1 was performed with independent parameters BSA, age at start of endurance training and endurance training per year. Model 2 was performed with the additional independent parameter HR at rest. Model 1 explained 27.7% of the total variance (Table 3, model 1), and model 2, with the additional parameter HR at rest, explained 38.2% of the total variance (Table 3, model 2). Standardized beta coefficients of significant parameters were similar (within and between models).

The logistic regression model for eccentric and concentric LVH showed that only age at start of endurance training was significantly related to allocation to eccentric and concentric LVH (\(P = 0.016 \)). The model with all three training variables accurately allocated 91.4% of athletes with LVH to eccentric and concentric LVH, the same percentage as was correctly allocated with age at start of endurance training alone. Cumulative lifetime endurance training and yearly endurance training were insignificant predictors in the model with all three training variables (\(P = 0.205 \) and \(P = 0.520 \), respectively). In the univariate models they were significant but the percentage of accurately allocated athletes was considerably smaller (74% and 57%, respectively).

Table 1
Baseline characteristics and echocardiography stratified according to patterns of left ventricular hypertrophy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Normal LV geometry (n = 68)</th>
<th>Concentric LV remodeling (n = 18)</th>
<th>Eccentric LVH (n = 18)</th>
<th>Concentric LVH (n = 17)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athlete characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>40 ± 7</td>
<td>46 ± 8</td>
<td>40 ± 7</td>
<td>45 ± 9</td>
<td>0.017</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>22.7 ± 1.9</td>
<td>23.9 ± 1.9</td>
<td>22.4 ± 1.4</td>
<td>23.0 ± 1.9</td>
<td>0.060</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>1.9 ± 0.1</td>
<td>2.0 ± 0.2</td>
<td>1.9 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>0.286</td>
</tr>
<tr>
<td>Heart rate at rest (bpm)</td>
<td>59.4 ± 10</td>
<td>65.8 ± 10</td>
<td>50.3 ± 7†‡ §</td>
<td>61.5 ± 10</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure at rest (mm Hg)</td>
<td>121 ± 9</td>
<td>127 ± 6</td>
<td>121 ± 10</td>
<td>123 ± 10</td>
<td>0.005</td>
</tr>
<tr>
<td>Echocardiography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA volume/BSA (ml/m²)</td>
<td>30.1 ± 5.8</td>
<td>28.8 ± 5.9</td>
<td>34.8 ± 5.31‡</td>
<td>34.1 ± 7.1</td>
<td>0.002</td>
</tr>
<tr>
<td>LV mass/BSA (g/m²)</td>
<td>93.6 ± 12.1</td>
<td>103.8 ± 7.8</td>
<td>126.0 ± 8.6</td>
<td>129.1 ± 7.4</td>
<td><0.001</td>
</tr>
<tr>
<td>LV EDV/BSA (ml/m²)</td>
<td>61.1 ± 9.6</td>
<td>48.7 ± 5.7ª</td>
<td>78.5 ± 8.6‡</td>
<td>57.0 ± 8.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Posterior wall thickness (mm)</td>
<td>9.4 ± 1.1</td>
<td>10.2 ± 0.9ª</td>
<td>10.0 ± 1.0§</td>
<td>10.9 ± 0.8‡</td>
<td><0.001</td>
</tr>
<tr>
<td>LV internal diameter (mm)</td>
<td>50.7 ± 4.1</td>
<td>50.0 ± 4.8</td>
<td>55.9 ± 3.1‡‡ §</td>
<td>53.2 ± 3.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Relative wall thickness</td>
<td>0.37 ± 0.06</td>
<td>0.41 ± 0.07ª</td>
<td>0.36 ± 0.05‡</td>
<td>0.41 ± 0.05</td>
<td>0.004</td>
</tr>
<tr>
<td>LV ejection fraction (%)</td>
<td>63.6 ± 4.9</td>
<td>64.1 ± 4.6</td>
<td>64.3 ± 4.9</td>
<td>65.8 ± 6.2</td>
<td>0.453</td>
</tr>
<tr>
<td>E’ mean (cm/s)</td>
<td>13.0 ± 2.1</td>
<td>12.2 ± 1.8</td>
<td>12.1 ± 1.7</td>
<td>11.9 ± 1.9</td>
<td>0.114</td>
</tr>
<tr>
<td>A’ mean (cm/s)</td>
<td>8.9 ± 1.9</td>
<td>9.5 ± 1.3</td>
<td>8.8 ± 2.0</td>
<td>9.4 ± 1.7</td>
<td>0.452</td>
</tr>
<tr>
<td>E/A ratio</td>
<td>1.7 ± 0.4</td>
<td>1.4 ± 0.2</td>
<td>1.8 ± 0.4†</td>
<td>1.5 ± 0.4</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Please note: As no athlete was classified as concentric dilated LVH and due to the small numbers in non-dilated and dilated LVH, only four groups are presented. Eccentric LVH includes non-dilated and dilated patterns of the four tiered classification of LVH, resulting in four remaining groups. Normal LV geometry (LV mass/BSA < 116 g/m² and concentricity < 9.1 g/ml²/3), concentric LV remodeling (LV mass/BSA < 116 g/m² and concentricity ≥ 9.1 g/ml²/3), eccentric LVH (LV mass/BSA ≥ 116 g/m² and concentricity < 9.1 g/ml²/3) and concentric LVH (LV mass/BSA ≥ 116 g/m² and concentricity ≥ 9.1 g/ml²/3). LV, left ventricle; BSA, body surface area; LA, left atrium; E, early diastolic; E’, early diastolic mitral annular velocity; A’, late diastolic mitral annular velocity.

† By definition.
‡ P < 0.05 vs normal LV geometry.
§ P < 0.05 vs concentric remodeling.
¶ P < 0.05 vs concentric LVH.

Table 2
Sports history parameters of endurance athletes, stratified according to patterns of left ventricular hypertrophy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Normal LV geometry (n = 68)</th>
<th>Concentric LV remodeling (n = 18)</th>
<th>Eccentric LVH (n = 18)</th>
<th>Concentric LVH (n = 17)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sports history parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at start of training year</td>
<td>24 ± 10</td>
<td>27 ± 8</td>
<td>14 ± 5§†‡</td>
<td>31 ± 8</td>
<td><0.001</td>
</tr>
<tr>
<td>Cumulative lifetime training (h)</td>
<td>6669 (4063, 11,505)</td>
<td>5122 (3094, 7839)</td>
<td>10,608 (9120, 14,196)‡</td>
<td>6656 (3913, 10,205)</td>
<td>0.007</td>
</tr>
<tr>
<td>Cumulative lifetime high dynamic training (h)</td>
<td>5122 (3120, 9393)</td>
<td>3926 (3094, 6351)</td>
<td>8957 (8392, 13,715)‡</td>
<td>6188 (3185, 5156)</td>
<td>0.005</td>
</tr>
<tr>
<td>Cumulative lifetime ball sports training (h)</td>
<td>988 (0, 2860)</td>
<td>1014 (156, 1924)</td>
<td>78 (0, 2444)</td>
<td>1768 (390, 3588)</td>
<td>0.198</td>
</tr>
<tr>
<td>Cumulative lifetime endurance training (h)</td>
<td>3146 (1560, 6942)</td>
<td>3458 (1931, 5265)</td>
<td>8957 (3744, 13,299)‡</td>
<td>2808 (1742, 6903)</td>
<td>0.002</td>
</tr>
<tr>
<td>Endurance training per year (h)</td>
<td>259 (156, 393)</td>
<td>189 (134, 294)</td>
<td>337 (206, 527)</td>
<td>243 (208, 356)</td>
<td>0.059</td>
</tr>
<tr>
<td>Cumulative lifetime resistance training (h)</td>
<td>0 (0, 0.280)</td>
<td>0 (0, 0.780)</td>
<td>0 (0, 0)</td>
<td>0 (0)</td>
<td>0.177</td>
</tr>
<tr>
<td>Resistance training per year (h)</td>
<td>0 (0, 0.26)</td>
<td>0 (0, 0.85)</td>
<td>0 (0, 0)</td>
<td>0 (0)</td>
<td>0.169</td>
</tr>
<tr>
<td>10 mile race time (hours:min)</td>
<td>1:11 ± 0.10</td>
<td>1:17 ± 0.14</td>
<td>1:01 ± 0.04‡</td>
<td>1:08 ± 0.08</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Please note: As no athlete was classified as concentric dilated LVH and due to the small numbers in non-dilated and dilated LVH, only four groups are presented. Eccentric LVH includes non-dilated and dilated patterns of the four tiered classification of LVH, resulting in four remaining groups. Normal LV geometry (LV mass/BSA < 116 g/m² and concentricity < 9.1 g/ml²/3), concentric LV remodeling (LV mass/BSA < 116 g/m² and concentricity ≥ 9.1 g/ml²/3), eccentric LVH (LV mass/BSA ≥ 116 g/m² and concentricity < 9.1 g/ml²/3) and concentric LVH (LV mass/BSA ≥ 116 g/m² and concentricity ≥ 9.1 g/ml²/3).

LVH, left ventricular hypertrophy; LV, left ventricular.
4. Discussion

In this study assessing LV geometry of a diverse athletic population ranging from recreational to semi-professional runners, we found a close association of LV volume with age at start of endurance training. Age at start of endurance training was more closely related to LVEDV than any other measured training variable. Of note, all athletes with an increased LVEDV (≥74 ml/m²) started endurance training at an age ≤25 years. In particular, athletes with eccentric LVH were younger at start of endurance training compared to athletes with concentric LVH. To the best of our knowledge, this is the first study demonstrating an association between the age at start of endurance training and patterns of LVH in athletes.

4.1. LVH in endurance athletes

In our cohort of male, middle-aged, non-elite endurance athletes, we found some evidence that endurance training led to eccentric LVH; however, only in athletes who started their endurance training early. Furthermore, we found also concentric LVH in endurance athletes, namely in those who started their endurance training at an age of at least 30 years (76%, except for two athletes who started endurance training between 17 and 19 years). This confirms our hypothesis that age at start of endurance training may play an important role in LV morphologic adaptations. Concentric remodeling in athletes performing highly dynamic sports has been found also in another cross-sectional study on athletes [11].

In our study, athletes with concentric LVH had a significantly lower LVEDV (and correspondingly a slower race time) compared to athletes with eccentric LVH (57 ± 9 vs. 78 ± 9 ml/m², P < 0.001). Although athletes with concentric LVH had significantly fewer cumulative lifetime endurance training hours compared to athletes with eccentric LVH, the yearly volume of endurance training was comparable. In a longitudinal study in young, previously sedentary people, the development of LV mass was closely related to the quarterly training impulse [10]. The same study showed that the LV responded to endurance training with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement, with a normalization of the mass-to-volume ratio thereafter. This transient concentric remodeling would not explain our findings, as all of our athletes with concentric LVH had been performing endurance training for at least 3 years (median 12, IQR 6–21). Athletes with concentric LVH did not differ from all other athletes with regard to age, BSA, BMI, BP, EF, E’ mean and/or cumulative lifetime resistance training hours. Therefore, age at start of endurance training was the only remaining explaining factor measured in our study. The potentially important role of age at start of endurance training may have been overlooked in older studies, who based their findings on young elite athletes [5,16,27].

4.2. Left ventricular volume

By using Spearman correlation and regression models, we determined factors associated with LV cavity volume in our cohort of male, middle-aged athletes (Table 3). An early start of endurance training, greater BSA, and more yearly endurance training hours were significantly associated with LV cavity enlargement. There was also a significant association between LVEDV and age, mainly driven by the collinearity between age and age at start of endurance training. We chose to enter age at start of endurance training into the models rather than age because the univariate correlation coefficient with LVEDV was higher for this variable. The collinearity between age and age at start of

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized beta coefficient</th>
<th>P-value</th>
<th>Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body surface area</td>
<td>0.258</td>
<td>0.001</td>
<td>0.28</td>
</tr>
<tr>
<td>Age at start of endurance training</td>
<td>-0.385</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Endurance training per year</td>
<td>0.236</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td>Body surface area</td>
<td>0.312</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Age at start of endurance training</td>
<td>-0.314</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Endurance training per year</td>
<td>0.202</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Heart rate at rest</td>
<td>-0.344</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Relationship of endurance training hours per year and age at start of endurance training with left ventricular geometry (top panel), as well as left ventricular end-diastolic volume (bottom panel).
endurance training was based on a per definition relationship in that the
starting age in young athletes could not be older than their age. Conse-
quently, there were no young athletes with an old starting age, and the
absence of these data points led to a spurious correlation. Further, when
age was also entered into the linear regression model 1 for LVEDV, it had
no (further) significant contribution \((P = 0.07) \). Of note, age correlated
negatively with LVEDV, indicating that the LV cavity becomes smaller
with age. We suggest that this interpretation is unlikely to reflect the
truth in our generally fit population, but the negative correlation was
rather due to the confounding effect of age at start of endurance training
(which was positively correlated to age).

For a better comparison with the analyses presented by Pelliccia and
colleagues [14], we performed an additional model including HR (Table
3, model 2). While Pelliccia and colleagues’ model that included HR ex-
plained 63% of the variability in LV cavity dimensions, our correspond-
ing model 2 explained only 38% of the total variance of LVEDV. We
suggest that this dissimilarity is primarily based on the difference in
study populations. Pelliccia and colleagues had included pubertal, ado-
exteen and adult athletes, which resulted in a broad spectrum of BSA
and consequently a strong contribution of age. Therefore the contribu-
tion of BSA for explaining LV cavity dimensions was four-times higher
compared to BSA in our cohort (univariate correlation coefficients 0.76
vs. 0.19).

4.3. Adaptation mechanisms to exercise stress

The cellular response mechanisms of cardiomyocytes to growth
stimuli that result in morphological changes are hypertrophy (increased
cell size) and/or hyperplasia (increased cell number) [28]. For example,
endurance exercise in mice induced cardiomyocyte hypertrophy and/or
hyperplasia [29], possibly depending on the age of the animals [30,31].
Recent data from a study in humans showed that cardiomyocyte prolif-
eration contributed to heart growth up to the age of 20 [32]. The num-
ber of cardiomyocytes in the LV increased 3.4-fold between birth and
the age of 20. The percentages of cardiomyocytes in cytokinesis were
the highest in infants, with a successive decrease to low levels by
the age of 20. After age 20 there was no evidence of cardiomyocyte cytoki-
nesis [32]. Another study reported on cardiomyocyte renewal in adult
human hearts, which gradually decreased from 1.9% annual turnover at
the age of 19 to 0.45% at the age of 75 [33]. As the ability of cardiomyocytes to proliferate decreases throughout lifetime, hypertro-
phy may become the main contributor to exercise-induced heart
growth in mature athletes.

Cardiomyocyte hypertrophy is characterized by an increase in cell
length from 5% to 20% [34–36] as well as in cell width by a similar extent
[34,37]. The exercise induced hypertrophy in cardiomyocyte cell length
may lead to some LV cavity enlargement, which would explain the
LVEDV enlargement of 17% from 10 months of training in previously
sedentary middle-aged people [38]. Such an exercise induced cavity en-
largement by hypertrophy of cardiomyocyte is accompanied by an
increase in cell width, which in turn leads to an increased LV wall
thickness, resulting in a concentric remodeling pattern. On the other
hand, if hyperplasia contributes highly to exercise-induced heart
growth (as suggested up to the age of 20 to 30) [32], a sizeable LV cavity
enlargement with proportional wall thickening (i.e. eccentric remodel-
ing) would result.

Confirmatory evidence for this hypothesis is found in morphological
changes with detraining. Increased cardiomyocyte length and width
(i.e. hypertrophy) induced by a training intervention in rodents has
been found to be reversible within 2–4 weeks of detraining [34]. Like-
wise, a training/detraining study in previously untrained healthy
humans found an increase in wall thickness due to endurance training
(possibly resulting mainly from hypertrophy), with a decrease within
6 weeks of detraining [7]. Conversely, a cavity enlargement in young
elite athletes (probably resulting from hyperplasia) has been found to
persist through the same time period of detraining with a slow and
small decrease thereafter (mean 7% in 5.6 years) [39].

While in bone the ‘window of opportunity’ is clearly closed by the
end of puberty when the growth plates are fused [40], for the heart
this window seems to close more gradually, up until an age of approxi-
mately 20 to 30.

4.4. Future research

Based on the results of our study we hypothesize that previously
sedentary people who start intensive high volume endurance exercise
at a more mature age (after 25 to 30 years) may develop concentric
LVH. On the other hand, eccentric LVH will only develop in athletes
who start their endurance training early (before age 25–30). This hy-
pothesis should be tested in future studies.

4.5. Limitations

Training hours were based on estimation and/or exercise diary and
were therefore prone to recall and social desirability bias. Also, we had
no information on endurance training intensity. However, the main ob-
jective of our study was to assess age at start of endurance training,
which we expected to be less confounded by recall and social desirabil-
ity bias than training volume or intensity. Further, there was a strong in-
verse correlation between the precisely measured 10-mile race time
and the calculated endurance training hours per year. Secondly, the
cross sectional design of the study allowed the detection of associations
only, rather than cause and effect relationships. However, a longitudinal
(randomised) design allocating people to a training group starting en-
durance training during adolescence or a training group starting at an
advance age would hardly be feasible. Finally, echocardiography with
one-dimensional LV mass measurements and biplane two-dimensional
volume assessment has well known limitations [12,13].

5. Conclusions

In our cohort of non-elite middle-aged runners, eccentric LVH was
found only in athletes with an early start of endurance training. In
case of a mature starting age, endurance training may, contrary to
what is commonly assumed, also lead to concentric LVH. The consider-
ation of endurance training starting age may lead to a better under-
standing of morphological adaptations of the heart.

Acknowledgements

The authors gratefully acknowledge the athletes’ participation in
this study.

Source of funding

This study was supported by an internal grant of the Inselspital Bern.

Disclosures

None.

References

term clinical consequences of intense, uninterrupted endurance training in olympic
Upper limits of physiological cardiac adaptation in ultramarathon runners, J. Am.

